
Automated Black-box Verification
of Networking Systems

Collaborators

Nate Foster

Dexter Kozen Steffen Smolka

Matteo Sammartino Stefan Zetzsche

Many of today’s high-level languages were
designed in an era when computers looked like

this...

But nowadays, computers look like this...

And applications are structured like this...

Network

!

"

#$

% &

•Stand-alone
•Centralized
•Sequential
•Functional

•Networked
•Distributed
•Concurrent
•Interactive

`
We need new kinds of abstractions and tools 
for programming these networked systems!

Specify communication
Optimize performance

Guarantee security

Software-Defined
Networking

Networking

“The last bastion of mainframe computing” [Hamilton 2009]

I Modern computers
I implemented with commodity hardware
I programmed using general-purpose languages, standard interfaces

I Networks
I built and programmed the same way since the 1970s
I low-level, special-purpose devices implemented on custom hardware
I routers and switches that do little besides maintaining routing tables

and forwarding packets
I configured locally using proprietary interfaces
I network configuration (“tuning”) largely a black art

Networking

I Di�cult to implement end-to-end routing policies and optimizations
that require a global perspective

I Di�cult to extend with new functionality

I E↵ectively impossible to reason precisely about behavior

Software-Defined Networking
A clean-slate architecture based on two key ideas:
• Generalize network devices
• Separate control and forwarding

Controller

�11

Software-Defined Networks

OpenFlow

A first step: the OpenFlow API [McKeown & al., SIGCOMM 08]

I specifies capabilities and behavior of switch hardware

I a language for manipulating network configurations

I very low-level: easy for hardware to implement, di�cult for humans
to write and reason about

But. . .

I is platform independent

I provides an open standard that any vendor can implement

OpenFlow Switch

Match Actions Counters
10.0.0.1 Drop (73,2458)
10.0.0.2 Forward 2 (16,846)
10.0.0.3 Forward 3 (23,5729)

* Controller (5,472)

Key data structure is a flow table containing a
prioritized list of match-action rules and counters

General-purpose packet-processing device that can be used to implement switches,
routers, firewalls, etc.

OpenFlow Switch

OpenFlow Controller

Controller

OpenFlow Switch

Switch to controller:
• switch_connected
• switch_disconnected
• port_status
• packet_in
• stats_reply

Controller to switch:
• flow_mod
• packet_out
• stats_request

Match Actions Counters

Verification of networks

✤ Frenetic [Foster & al., ICFP 11]
✤ Pyretic [Monsanto & al., NSDI 13]
✤ Maple [Voellmy & al., SIGCOMM 13]
✤ FlowLog [Nelson & al., NSDI 14]
✤ Header Space Analysis [Kazemian & al., NSDI 12]
✤ VeriFlow [Khurshid & al., NSDI 13]
✤ NetKAT [Anderson & al., POPL 14]
✤ and many others . . .

Trend in PL&Verification after Software-Defined Networks

• Design high-level languages that model essential network features
• Develop semantics that enables reasoning precisely about behaviour
• Build tools to synthesise low-level implementations automatically

But…

Does the low-level implementation really do
what it is supposed to do?

What if there is no formal model?

Model

Properties

Automated
Verification

What we propose

Build black-box model via
interactions with the system

Automated
Modelling

Automaton

Automata learning (Angluin ’87)

Learner

Set of system behaviours is a regular language
Finite alphabet of system’s actions A

ℒ ⊆ A⋆

Oracle

ℒ

Q: A: Y/Nw ∈ ℒ?

Membership Query

A: Y / N + counterexample

Equivalence Query

Q: where is a hypothesis automatonℒ(H) = ℒ? H

Minimal DFA
accepting L ℒ

In practice…

Oracle

Membership Query

Equivalence Query
Model-based

testing

Test Suite

Model-checking

Is spec violation an
actual bug?= Test Case“Lazy” testing and model-checking

Good for scalability!

Many interesting applications

•Detect TLS implementations flaws
[USENIX Sec. Sym. ’15]

•TCP implementations [CAV ’16]

•Analysis of botnet protocols [CCS ’10]

•Bank cards …

To each application domain its model…

Non-deterministic
Weighted

Register

Mealy Machines
Alternating

Universal

Probabilistic

Buchi

Do I need to write my automata learning algorithm from scratch?

NO! Category Theory can help!

Categorical
Automata
Learning
Framework

calf-project.org

Gerco van Heerdt
UCL Joshua Moerman

Radboud University
Bartek Klin

Warsaw University
Michal Szynwelski

 Warsaw University
Maverick Chardet

ENS Lyon
Tiago Ferreira
UCL Intern

Different automata, same structure

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Q⇥A

q0 2 Q F ✓ Q

2

DFAs
F = (−) × A

Automaton

type

“Collection” of states

(not necessarily a set!)

Collection of state outputs

1
Initial state selector

A general framework
Abstract observation data

structure

General correctness theorem=Guidelines for implementation

New algorithms!

approximates

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FQ

Q

I Y

”Q

outQinitQ

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

Target minimal automaton

Hypothesis automaton

Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva 7

property stating that for all s
1

, s
2

œ S such that ›(s
1

) = ›(s
2

) we must have L(s
1

) = L(s
2

).
The Lı algorithm ensures this by having Á œ E, using that L(s) = ›(s)(Á) for any s œ S.

4 A General Correctness Theorem

In this section we work towards a general correctness theorem. We then show how it applies
to the ID algorithm, to the algorithm by Arbib and Zeiger and to Lı.

S T

H P

‡

e fi
„

m

S H

T P

e

‡ m
Â

fi

(3)

The key observation for the correctness theorem
is the following. Let w = (S ‡≠æ T, T

fi≠æ P) be
a wrapper with minimization (S e≠æ H, H

m≠æ P).
If ‡ œ E , then the factorization system gives us a
unique diagonal „ in the left square of (3), which by (the dual of) Proposition ?? satisfies
„ œ E . Similarly, if fi œ M, we have Â in the right square of (3), with Â œ M. Composing the
two diagrams and using again the diagonal property, one sees that „ and Â must be mutually
inverse. We can conclude that H and T are isomorphic. Now, if w is a wrapper produced
by a learning algorithm and T is the state space of the target minimal automaton, as in
Example 2, our reasoning hints at a correctness criterion: ‡ œ E and fi œ M upon termination
ensure that H is (isomorphic to) T . Of course, the criterion will have to guarantee that the
automata, not just the state spaces, are isomorphic.

We first show that the argument above lifts to F -algebras f : FT æ T , for an arbitrary
endofunctor F : C æ C preserving E .

I Lemma 11. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E, then w is f -closed; if
fi œ M, then w is f-consistent.

Proof. If ‡ œ E , then let „ be as in (3) and define closef = „ ¶ f ¶ F‡; if fi œ M, then let Â
be as in (3) and define consf = fi ¶ f ¶ FÂ. J

I Proposition 12. For a wrapper w = (‡, fi) and an F -algebra f , if ‡ œ E and w is f-
consistent, then „ as given in (3) is an F -algebra homomorphism (T, f) æ (H, ◊f); if fi œ M
and w is f-closed, then Â as given in (3) is an F -algebra homomorphism (H, ◊f) æ (T, f).
Proof. Assume that ‡ œ E and w is FT T H

FS P

FT FH H

f „

fi m
›f

F ‡ F e closef

F ‡ 1

2

F „

3

4

5

◊f

m

1 definition of ›f

2 (3)
3 functoriality, (3)
4 definition of ◊f

5 closedness

f -consistent. The proof for the other
part is analogous. Using Lemma 11 we
see that ◊f indeed exists. Because F‡
is epic and m monic, it su�ces to show
m¶„¶f ¶F‡ = m¶◊f ¶F„¶F‡, which
is done on the right. (The definition of
◊f can be found in the proof of Proposition 9.) J

I Corollary 13. If ‡ œ E and fi œ M, then „ as given in (3) is an F -algebra isomorphism
(T, f) æ (H, ◊f).

Now we enrich F -algebras with initial and final states, obtaining a notion of automaton in a
category. Then we give the full correctness theorem for automata. We fix objects I and Y in
C, which will serve as initial state selector and output of the automaton, respectively.
I Definition 14 (Automaton). An automaton in C is an object Q FH

H

I Y

”H

outHinitH

of C equipped with an initial state map initQ : I æ Q, an output
map outQ : Q æ Y , and dynamics ”Q : FQ æ Q. An input system
is an automaton without an output map; an output system is an
automaton without an initial state map.

abstract closedness
and consistency

CALF: Categorical Automata Learning Framework (CSL ’17)
Gerco van Heerdt, Matteo Sammartino, Alexandra Silva

Nom
Vect

Set DFAs
Nominal automata
Weighted automata

Change automaton type
Observation tables

Discrimination trees

Change main data structureLearning Nominal Automata (POPL ’17)
Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Other automata & optimizations

Plug monads in
NFAs

Partial automata

Universal automata
Alternating automata

Powerset
Powerset with intersection

Double powerset
Maybe monad

or functions to quantify a predicate over a set:

exists, forall : (⌧ ! Formula) ! Set ⌧ ! Formula

exists p s = not (isEmpty (filter p s))

forall p s = isEmpty (filter (�x.not (p x)) s)

and so on. Note that these functions are written in exactly the same
way as they would be for finite sets and the standard Data.Set
type. This is not an accident, and indeed the programmer can use
the convenient set-theoretic intuition of NLambda primitives. For
example, one could conveniently construct various orbit-finite sets
such as the set of all pairs of atoms:

atomPairs = sum (map (�x.map (�y.(x, y)) atoms) atoms),

the set of all pairs of distinct atoms:

distPairs = filter (�(x, y).not(eq x y)) atomPairs

and so on.
It should be stressed that all these constructions terminate in finite

time, even though they formally involve infinite sets. To achieve this,
values of orbit-finite set types Set ⌧ are internally not represented
as lists or trees of elements of type ⌧ . Instead, they are stored and
manipulated symbolically, using first-order formulas over variables
that range over atom values. For example, the value of distPairs
above is stored as the formal expression:

{(a, b) | a, b 2 A, a 6= b}
or, more specifically, as a triple:
• a pair (a, b) of “atom variables”,
• a list [a, b] of those atom variables that are bound in the expres-

sion (in this case, the expression contains no free variables),
• a formula a 6= b over atom variables.

All the primitives listed above, such as isEmpty, map and sum,
are implemented on this internal representation. In some cases,
this involves checking the satisfiability of certain formulas over
atoms. In the current implementation of NLambda, an external SMT
solver Z3 [34] is used for that purpose. For example, to evaluate the
expression isEmpty distPairs, NLambda makes a system call to
the SMT solver to check whether the formula a 6= b is satisfiable in
the first-order theory of equality and, after receiving the affirmative
answer, returns the value False.

For more details about the semantics and implementation of
NLambda, see [26]. The library itself can be downloaded from [40].

6.2 Implementation of ⌫L? and ⌫NL?

Using NLambda we implemented the algorithms from Sec-
tions 4 and 5. We note that the internal representation is slightly
different than the one discussed in Section 4. Instead of representing
the table (S,E) with actual representatives of orbits, the sets are
represented logically as described above. Furthermore the control
flow of the algorithm is adapted to fit in the functional programming
paradigm. In particular, recursion is used instead of a while loop. In
addition to the nominal adaptation of Angluin’s algorithm ⌫L?, we
implemented a variant, ⌫L?col which adds counterexamples to the
columns instead of rows.

Target automata are defined using NLambda as well, using the
automaton data type provided by the library. Membership queries
are already implemented by the library. Equivalence queries are
implemented by constructing a bisimulation (recall that bisimulation
implies language equivalence), where a counterexample is obtained
when two DFAs are not bisimilar. For nominal NFAs, however, we
cannot implement a complete equivalence query as their language
equivalence is undecidable. We approximated the equivalence by
bounding the depth of the bisimulation for nominal NFAs. As an
optimization, we use bisimulation up to congruence [13]. Having

DFA ⌫L? (s) ⌫L?col (s) RFSA ⌫NL? (s)
FIFO0 2 0 1.9 1.9 2 0 2.4
FIFO1 3 1 12.9 7.4 3 1 17.3
FIFO2 5 2 45.6 22.6 5 2 70.3
FIFO3 10 3 189 107 10 3 476
FIFO4 25 4 370 267 25 4 1230
FIFO5 77 5 1337 697 1 1 1
L0 2 0 1.3 1.4 2 0 1.4
L1 4 1 29.6 4.7 4 1 8.9
L2 7 2 229 23.1 7 2 84.7
L0
0 3 1 4.4 4.9 3 1 11.3

L0
1 5 1 15.4 15.4 4 1 66.4

L0
2 9 1 46.3 40.5 5 1 210

L0
3 17 1 89.0 66.8 6 1 566

Leq n/a n/a n/a n/a 3 1 16.3

Table 1. Results of experiments. The column DFA (resp. RFSA)
shows the number of orbits (left sub-column) and dimension (right
sub-column) of the learnt minimal DFA (resp. canonical RFSA). We
use 1 when the running time is too high.

an approximate teacher is a minor issue since in many applications
no complete teacher can be implemented and one relies on testing
[2, 12]. For the experiments listed here the bound was chosen large
enough for the learner to terminate with the correct automaton.

We remark that our algorithms seamlessly merge with teachers
written in NLambda, but the current version of the library does not
allow generating concrete membership queries for external teachers.
We are currently working on a new version of the library in which
this will be possible.

6.3 Test Cases
To provide a benchmark for future improvements, we tested our
algorithms on a few simple automata described below. We report
results in Table 1. The experiments were performed on a machine
with an Intel Core i5 (Skylake, 2.4 GHz) and 8 GB RAM.
Queue Data Structure. A queue is a data structure to store el-
ements which can later be retrieved in a first-in, first-out order.
It has two operations: push and pop. We define the alphabet
⌃FIFO = {push(a), pop(a) | a 2 A}. The language FIFOn

contains all valid traces of push and pop using a bounded queue of
size n. The minimal nominal DFA for FIFO2 is

q0 q1,x q2,x,y

?

push(x)

pop(x)

push(y)

pop(x) to q1,y
pop(A)

pop(6= x)

pop(6= x)/push(A)
?

The state reached from q1,x via
push(x)�����! is omitted: Its outgoing

transitions are those of q2,x,y , where y is replaced by x. Similar
benchmarks appear in [2, 23].
Double Word. Ln = {ww | w 2 An} from Section 2.
NFA. Consider the language Leq =

S
a2A A?aA?aA? of words

where some letter appears twice. This is accepted by an NFA which
guesses the position of the first occurrence of a repeated letter a and
then waits for the second a to appear. The language is not accepted
by a DFA [9]. Despite this ⌫NL? is able to learn the automaton:

q00 q01,x q02

x

A

x

A to any q

0
2,x

A

A A

y to q

0
2,y

A

Infinite alphabets

infinite-state, but finitely representable automata

Nom
Vect

Set DFAs
Nominal automata
Weighted automata

Change automaton type
Observation tables

Discrimination trees

Change main data structure

Other automata & optimizations

Plug monads in
NFAs

Partial automata

Universal automata
Alternating automata

Powerset
Powerset with intersection

Double powerset
Maybe monad

Optimising Automata Learning via Monads
Gerco van Heerdt, Matteo Sammartino, Alexandra Silva (arXiv:1704.08055)

Learning Nominal Automata (POPL ’17)
Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, Michal Szynwelski

Extensions

Optimizations

Minimization Testing

Automata Learning

Connections with other techniques

Model

Properties

Automated
Verification

What we propose

Build black-box model via
interactions with the system

Automated
Modelling

Automaton

Language to describe
behaviours

NetKAT [Anderson & al. 14]

NetKAT
=

Kleene algebra with tests (KAT)
+

additional specialized constructs particular to
network topology and packet switching

NetKATKleene Algebra (KA)

Stephen Cole Kleene
(1909–1994)

(0 + 1(01⇤0)⇤1)⇤

{multiples of 3 in binary}
1

0

1

0

0

1

(ab)⇤a = a(ba)⇤

{a, aba, ababa, . . .}
a

b

(a+ b)⇤ = a⇤(ba⇤)⇤

{all strings over {a, b}}
a + b

NetKAT
Kleene Algebra with Tests (KAT)

(K ,B ,+, ·,⇤ , , 0, 1), B ✓ K

I (K ,+, ·,⇤ , 0, 1) is a Kleene algebra

I (B ,+, ·, , 0, 1) is a Boolean algebra

I (B ,+, ·, 0, 1) is a subalgebra of (K ,+, ·, 0, 1)

I p, q, r , . . . range over K

I a, b, c , . . . range over B

KAT = simple imperative language

If b then p else q = b;p + !b;q

While b do p = (bp)*!b

KAT Results

Deductive Completeness and Complexity
I deductively complete over language, relational, and trace models

I subsumes propositional Hoare logic (PHL)

I deductively complete for all relationally valid Hoare-style rules

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

I decidable in PSPACE

Applications
I protocol verification

I static analysis and abstract interpretation

I verification of compiler optimizations

NetKAT

NetKAT

I a packet ⇡ is an assignment of constant values n to fields x

I a packet history is a nonempty sequence of packets
⇡1 :: ⇡2 :: · · · :: ⇡k

I the head packet is ⇡1

NetKAT

I assignments x n
assign constant value n to field x in the head packet

I tests x = n
if value of field x in the head packet is n, then pass, else drop

I dup
duplicate the head packet

NetKAT

Networks in NetKAT

sw=6;pt=8;dst := 10.0.1.5;pt:=5

 For all packets located at port 8 of switch 6, set the destination address
to 10.0.1.5 and forward it out on port 5.

Networks in NetKAT
Networks

The behavior of an entire network can be encoded in NetKAT
by interleaving steps of processions by switches and topology

policy
+

(policy; topo); policy
+

(policy; topo; policy; topo); policy
⋮

(policy; topo)*; policy

policy

topo

The behaviour of an entire network can be encoded in NetKAT
by interleaving steps of processions by switches and topology

Semantics

(policy;topo)*;policy

packet history set of packet histories
<p,…> {<q,…>,<r,…>}

[[e]] : H ! 2H

Standard Model

Standard model of NetKAT is a packet-forwarding model

JeK : H ! 2H

where H = {packet histories}

Jx nK(⇡1 :: �)
4
= {⇡1[n/x] :: �}

Jx = nK(⇡1 :: �)
4
=

(
{⇡1 :: �} if ⇡1(x) = n

? if ⇡1(x) 6= n

JdupK(⇡1 :: �)
4
= {⇡1 :: ⇡1 :: �}

Verification using NetKAT
Examples

Reachability
I Can host A communicate with host B? Can every host

communicate with every other host?

Security
I Does all untrusted tra�c pass through the intrusion detection

system located at C?

Loop detection
I Is it possible for a packet to be forwarded around a cycle in the

network?

Results

Soundness and Completeness [Anderson et al. 14]

I ` p = q if and only if JpK = JqK

Decision Procedure [Foster et al. 15]

I NetKAT coalgebra

I e�cient bisimulation-based decision procedure

I implementation in OCaml

I deployed in the Frenetic suite of network management tools

Verification using NetKAT

 For all packets located at port 8 of switch 6, set the destination address
to 10.0.1.5 and forward it out on port 5.

𝗌𝗐 = 𝟨; 𝗉𝗍 = 𝟪; 𝖽𝗌𝗍 := 𝟣𝟢 . 𝟢 . 𝟣 . 𝟧; 𝗉𝗍 := 𝟧

𝖺; 𝖻 ∥ 𝖼; 𝖽
Thread 1: do a and then b Thread 2: do c and then d

Missing ingredient
𝖭𝖾𝗍𝖪𝖺𝗍

𝖢𝖪𝖠 [Kappe et al., CONCUR ’17, ESOP ’18][Hoare et al., JLAMP ’11]

Forwarding/
Filtering behaviour Concurrency

CALF

Large data
domains

in collaboration with

Current explorations

𝖭𝖾𝗍𝖪𝖺𝗍 𝖢𝖪𝖠

• Analysing concurrency in hardware, in collaboration
with

	
	
	 	 	

Arm Head Office: • 110 Fulbourn Road • Cambridge • CB1 9NJ • UK
Tel: +44 (0) 1223 400400 • Web: www.arm.com • Registered in England 255759

	

Arm Ltd
110 Fulbourn Road

Cambridge
GB-CB1 9NJ

Tel: +44 (1223) 400 400

Fax: +44 (1223) 400 410

August 20, 2018

Professor Silva
Department of Computer Science
University College London
Gower Street
London
WC1E 6BT

Dear Professor Silva,

Thank you for providing me with details of “Verification of Hardware Concurrency
via Model Learning (CLeVer)”, a proposal to be submitted for EPSRC funding, that
Arm has helped to shape. Our contribution to the proposal concerned the
identification of promising directions for the applied aspects of the project. I am very
pleased to be able to write this letter of support.

Arm is the world's largest provider of semiconductor IP and is the architecture of
choice for more than 90% of the smart electronic products being designed today.
Arm designs and found their way into more than 17Bn devices in 2016 alone. As well
as our 32/64 bit CPU cores, our hardware products extend to GPUs, DSP cores, cell
libraries, memory compilers and system components. We also supply software tools
and stacks; reference designs and OS ports to enable our customers to create
functional systems as quickly and reliably as possible. Though we do not fabricate
anything ourselves, our customers do. To maintain our value proposition it is
essential that we are aware of the developing needs from the markets and the
opportunities presented by emerging technologies.

The completeness, fidelity, and trustworthiness of models is an important challenge
for Arm. A recent example of this process has been the development of a model to
describe how memory architecture interacts with prospective transactional memory
extensions, and the use of this model to debug a prototype implementation of
transactional memory.

Arm is highly interested in the development of techniques that offer the potential to
make the design of these models more automatic -- both tools that provide a design
aid for human designers, and tools that automate the modelling process altogether.
This project has the potential to provide significant advances in this direction.

Should the proposal be accepted, we anticipate making our time and knowledge
available under appropriate conditions to support this research and impact-related
activities, e.g., by providing feedback on the accuracy of the models developed in
this project, the types of verifications that would be useful from a commercial

Other research directions

• Learning the “correct ways” of using undocumented
code

• Learning-based automated test generation

Software Analysis

Hardware Analysis

