
Weak Consistency
(TSO as an Example)

Parosh Aziz Abdulla1 Ahmed Bouajjani2Mohamed Faouzi Atig1

Tuan Phong Ngo1 1Uppsala University
2IRIF, Université Paris Diderot & IUF 1

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

Sequential Consistency (SC)
• Shared memory

Processes

memory

P1

P2

write

write
read

read

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

+ Simple and intuitive

Sequential Consistency (SC)
• Shared memory

Execution

Processes

memory

P1

P2

write

write
read

read

P1: w(x,1) P2: r(x,1) P2: w(y,1) P1: r(y,1)

• Interleaving of the operations
• Processes: atomic read/write

+ Simple and intuitive
- Too strong

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud
Cloud Computing

• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2) P2: r(x,1)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2) P2: r(x,1) P3: r(x,0)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2) P2: r(x,1) P3: r(x,0)

P2: r(x,2)P3: r(x,1) P3: r(x,2)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2) P2: r(x,1) P3: r(x,0)

P2: r(x,2)P3: r(x,1) P3: r(x,2)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

P0

write

read
P1

write

read
P3

w
ri

te

re
ad

P2

w
ri

te

re
ad

cloud

Execution
P0: w(x,1) P1: w(x,2) P2: r(x,1) P3: r(x,0)

P2: r(x,2)P3: r(x,1) P3: r(x,2)

Cloud Computing
• Processes perform local operations
• Operations propagated asynchronously

6

TSO - Total Store Order

- Used by Sun SPARCv9
- Formalization of Intel x86

• Widely used:

- Write operations are slow
- Introduce store buffers

• Memory access optimization:

P1

P2

x=0

y=0

processes shared
variables

6

TSO - Total Store Order

- Used by Sun SPARCv9
- Formalization of Intel x86

• Widely used:

- Write operations are slow
- Introduce store buffers

• Memory access optimization:

P1

P2

x=0

y=0

processes shared
variables

store
buffer

FIFO
buffer

7

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

8

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2
x=1

8

TSO - Classical Semantics

P1

P2

x=0

y=0P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

write to
buffer

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

9

P1

P2

x=0

y=0

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

9

P1

P2

x=0

y=0

x=1x=2

write to
buffer

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

10

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

10

P1

P2

x=0

y=0

x=2

read from
buffer

x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

11

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

11

P1

P2

x=0

y=0

read from
memory

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

12

P1

P2

x=0

y=0

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

12

P1

P2

x=0

y=0

update
memory

x=2 x=1

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

13

P1

P2

x=1

y=0

x=2

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

13

P1

P2

x=1

y=0

update
memory

x=2

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

14

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

14

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

TSO - Classical Semantics

P1: read: x = 2

P1: write: x = 1

P1: read: y = 0

P1: write: x = 2

14

P1

P2

x=2

y=0

•write to buffer

•read from buffer

•read from memory

•update memory

•Extra behaviors
•Potentially bad behaviors

TSO

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

15

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

Sequential Consistency = Interleaving

At most one
process at its CS

at any time

15

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

16

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

17

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

18

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

19

x=1

write
 to buffer

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

20

x=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

P1

P2

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

P1 P2

21

x=1

read: y = 0

Dekker Protocol

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

22

x=1

read from
memory

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

23

x=1

enter CS

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

critical section

write: y = 1

read: x = 0
critical section

TSO

24

x=1

read: y = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

25

x=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

read: x = 0
critical section

TSO

26

x=1

write to
buffer

y=1

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

27

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

28

x=1

y=1

read: x = 0

read from
memory

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

29

x=1

y=1

read: x = 0

enter CS

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

30

x=1

y=1

read: x = 0

2 processes in CS
at the same time

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

31

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

32

x=1

y=1

read: x = 0

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

32

x=1

y=1

read: x = 0

“read
overtaking

write”

Dekker Protocol

P1

P2

P1 P2

x = 0
y = 0

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

32

x=1

y=1

read: x = 0

“read
overtaking

write”
“read

overtaking
write”

Dekker Protocol

P1

P2

P1 P2

33

Weakly Consistent Systems

+ Efficiency

- Non-intuitive behaviours

• Microprocessors:
• TSO, POWER, ARM, …

• Weak Cache Protocols:
• TSO-CC, Racer, SISD, …

• Programming Languages:
• C11, Java, …

• Distributed Data Stores:
• Amazon, Facebook, Google, …

•

33

Weakly Consistent Systems

+ Efficiency

- Non-intuitive behaviours

• Semantics

• Correctness analysis: simualtion, testing,
verification, synthesis

• Methods and tools: decidability, complexity,
algorithms

• Specifications

• Microprocessors:
• TSO, POWER, ARM, …

• Weak Cache Protocols:
• TSO-CC, Racer, SISD, …

• Programming Languages:
• C11, Java, …

• Distributed Data Stores:
• Amazon, Facebook, Google, …

•

33

Weakly Consistent Systems

+ Efficiency

- Non-intuitive behaviours

• Semantics

• Correctness analysis: simualtion, testing,
verification, synthesis

• Methods and tools: decidability, complexity,
algorithms

• Specifications

• Microprocessors:
• TSO, POWER, ARM, …

• Weak Cache Protocols:
• TSO-CC, Racer, SISD, …

• Programming Languages:
• C11, Java, …

• Distributed Data Stores:
• Amazon, Facebook, Google, …

•

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

34

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

34

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

34

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1

35

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1

36

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

37

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

unbounded
buffer

37

P0
x = 0
y = 0

Verification under TSO is
Difficult

while (1)
 write: x=1

P0: write: x = 1

P0: write: x = 1

P0: write: x = 1
…

…

x=1x=1…x=1

infinite state
space

unbounded
buffer

37

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

Dual TSO

P1

P2

x=0

y=0

processes shared
variables

load
buffer

FIFO
buffer

•store buffer load buffer
•write immediately updates memory
•buffers contain expected reads
•messages: self, other

x,1,self

y,2,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=0

y=0P2

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=0

y=0P2

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

update
memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

update
memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

update
memory

propagate
to yourself

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self

y=0,other

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

propagate
from

memory

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

read own
write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

x=1,self y=0,other

remove
oldest write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

remove
oldest write

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

read oldest
write

Dual TSO

P1: read: y = 0

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

read oldest
write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation
•propagate from memory
•read own-writes
•read oldest write
•remove oldest write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation
•propagate from memory
•read own-writes
•read oldest write
•remove oldest write

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation
•propagate from memory
•read own-writes
•read oldest write
•remove oldest write

TSO Dual-TSO⌘⌘⌘

Dual TSO

P1: write: x = 1
P1: read: x = 1

P1 x=1

y=0P2

y=0,other

P1: read: y = 0

•write + self-propagation
•propagate from memory
•read own-writes
•read oldest write
•remove oldest write

TSO Dual-TSO⌘⌘⌘

reachability

Dual TSO

P1

P2

x=0

y=0

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2) P1: r(y,0)

x=2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2) P1: r(y,0) P2: w(y,1)

x=2

Classical
TSO

P1 x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1P2

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1

P2: w(x,1)

Classical
TSO

P1

P2

x=0

y=0

P1: w(x,2)

x=2

P1: r(y,0) P2: w(y,1)

y=1

P2: w(x,1)

Classical
TSO

x=0

y=0y=1x=1

x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1x=1

x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1

x=1x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=0

y=0y=1

x=1x=2P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

x=2

y=1

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1

P2

Classical
TSO

P2: r(x,2)

x=0

y=0

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Classical
TSO

P2: r(x,2)

x=0

y=0

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0

x=0P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0,other

y=0

x=0P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

y=0,other

x=0

y=0

y=0,other

P2: w(y,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=0

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,selfP1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

Dual TSO

Classical
TSO

P2: r(x,2)

x=1

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1)

y=1,self

P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

x=1,self

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

y=0,other

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,self

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2)

x=2,other

P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(y,1) P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1)

P1: w(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: r(x,2)

P2: r(x,2)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

x=2

y=1

P2: w(x,1)

P1

P2

P1: w(x,2) P1: r(y,0) P2: w(y,1) P2: w(x,1) P2: r(x,2)

P1: w(x,2) P2: r(x,2) P1: r(y,0)

Dual TSO

Classical
TSO

P2: w(y,1)

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New

76

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on y

76

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on x
newest self

message on y

76

Dual TSO - Monotonicity

x=2,self y=1,self y=0,self

partition of
load buffer

x=1,other x=0,other

Old New
newest self

message on x
newest self

message on y

76

Dual TSO - Monotonicity

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

77

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =

77

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =

78

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

78

subword subword

Dual TSO - Monotonicity

Ordering on Buffers

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

79

subword subword

Dual TSO - Monotonicity

Ordering on Buffers

ab v xaybzab v xaybzab v xaybz

x=2,self y=1,self y=0,selfx=1,other x=0,other

x=2,self y=1,self y=0,self x=0,other

= =⊑ ⊑

79

subword subword

Dual TSO - Monotonicity

Ordering on Buffers

ab v xaybzab v xaybzab v xaybz

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…
…

…
…

80

•identical process states
•identical memory state
•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…
…

…
…

80

•identical process states
•identical memory state
•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

P1

P2

P1 P2

x = 1
y = 0

x,1,other

x=1,self

…
…

…
…

81

•identical process states
•identical memory state
•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

x = 1
y = 0

P1

P2 x,1,other

x=1,self

…
…

…
…

P1 P2

82

•identical process states
•identical memory state
•sub-word relation on buffers

Dual TSO - Monotonicity

Ordering on Configurations

83

Dual TSO - Monotonicity

Ordering on Configurations

Monotonicity

v

c1

c3

c2

83

Dual TSO - Monotonicity

Ordering on Configurations

Monotonicity

v

c1

c3

c2

v

9 c4

84

Dual TSO - Monotonicity

•finite-state programs running on TSO:
• reachability analysis terminates
•reachability decidable

Tool:
Memorax

Experimental
Results

https://github.com/memorax/memorax

standard
benchmarks:

litmus tests and mutual
exclusion

Tool:
Memorax

time (secs)
generated

configurations
Experimental

Results

Tool:
Memorax

time (secs)

parameterized
verification

generated
configurations

Experimental
Results

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

89

Cache
Coherence

Protocol
SC

?

|=
?

|=
?

|=

89

SC
?

|=
?

|=
?

|=

90

TSO
?

|=
?

|=
?

|=Cache
Coherence

Protocol

monitors

90

TSO
?

|=
?

|=
?

|=

monitors

TSO-Counter-
Examples

TSO-Counter-
Examples

P1: w(x,1)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1) P3: w(x,2)

TSO-Counter-
Examples

P1: w(x,1) P2: r(x,1) P3: w(x,2)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P4: r(y,1)

P5: r(x,1)

P3: w(y,1)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P5: r(x,1)

TSO-Counter-
Examples

P4: r(x,2)

P1: w(x,1) P2: r(x,1) P3: w(x,2) P4: r(y,1)

P5: r(x,1)

P3: w(y,1)

TSO ⌘⌘⌘ 12 counter-examples

Outline
• Weak Consistency
• Total Store Order (TSO)
• Dual TSO
• Verification
• Specification
• Synthesis

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

93

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

93

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

flushes the
buffer

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

93

x=1

y=1

read: x = 0
mfence mfence

fence
instruction

flushes the
buffer

prevents
re-ordeirng

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

94

x=1

y=1

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 0
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

95

x=1

y=1

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

96

y=1

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

97

y=1

read: x = 0
mfence mfence

execute
fence

Potential Bad Behaviour -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

98

y=1

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 0

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

99

y=1

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

100

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

101

read: x = 0
mfence mfence

execute
fence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

102

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

103

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

104

read: x = 0
mfence mfence

Potential Bad Behaviour -
Dekker

x = 1
y = 1

P0

P1

Initially: x = y = 0

write: x = 1

read: y = 0
critical section

write: y = 1

critical section

TSO

P0 P1

104

read: x = 0
mfence mfence

At
most one process

executes its CS
at any time

Potential Bad Behaviour -
Dekker

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

specification

no

yes

yes

no

insert fences

105

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

106

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

107

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

108

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

109

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

110

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

111

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

111

no reordering
=

bug not due to
memory model

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

112

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

112

specification

program

find reordering
and

prevent it

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

113

specification

program

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

113

specification

program

try again

Verification and Correction

reachability
analysis reachable? execution

analysis preventable?

program correct program incorrect

no

yes

yes

no

insert fences

113

specification

program

try again

optimality = smallest set of fences
needed for correctness

Conclusion

• Weak Consistency
• Total Store Order (TSO)
• Dual TSO

Current Work
• Weak Cache Verification
• Other memory models, e.g., POWER, ARM, C11
• Stateless Model Checking
• Monitor Design

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results

https://www.it.uu.se/katalog/tuang296/dual-tso
115

https://www.it.uu.se/katalog/tuang296/dual-tso

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
Single buffer

approach (exact method
[TACAS12+13])

https://www.it.uu.se/katalog/tuang296/dual-tso
115

https://www.it.uu.se/katalog/tuang296/dual-tso

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results

116

standard
benchmarks:

litmus tests and mutual
exclusion algorithms

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Resultsrunning time
in seconds

117

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
generated

configurations

118

Dual-TSO vs Memorax

• Running time

• Memory consumption

Experimental Results
generated

configurations

Dual-TSO is faster and uses
less memory in most of

examples

118

Experimental Results
Parameterised Cases

119

Experimental Results
Parameterised Cases

unbounded
number of processes

119

increasing
the number of

processes

120

Experimental Results
Parameterised Cases

Dual-TSO is
more scalable

121

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10

LB

Dual-TSO

Memorax

Experimental Results
Parameterised Cases

Dual-TSO is more efficient
and scalable

122

Experimental Results
Parameterised Cases

