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Dual TSO - Monotonicity

•finite-state programs running on TSO: 
• reachability analysis terminates 
•reachability decidable 
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Conclusion

• Weak Consistency 
• Total Store Order (TSO) 
• Dual TSO 

Current Work
• Weak Cache Verification 
• Other memory models, e.g., POWER, ARM, C11 
• Stateless Model Checking 
• Monitor Design 
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