Weak Consistency (TSO as an Example)

Mohamed Faouzi Atig ${ }^{1}$

Ahmed Bouajjani ${ }^{2}$
${ }^{1}$ Uppsala University

Tuan Phong Ngo ${ }^{1}$
${ }^{2}$ IRIF, Université Paris Diderot \& IUF

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

Outline

- Weak Consistency

Total Store Order (ISO)

- Dual TSO
- Verification
- Specification
- Synthesis

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Processes

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Processes

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Processes

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Processes


```
P1:w(x,1) }->\mathrm{ P&: r(x,1)
```


Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Fxecution

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations
+ Simple and intuitive

Processes

Sequential Consistency (SC)

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations
+ Simple and intuitive
- Too strong

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

$P 0: w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P R: r(x, 1) \rightarrow P 3: r(x, 0)$

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

$\begin{aligned} P 0: w(x, 1) & \rightarrow P 1: w(x, Z) \rightarrow P \&: r(x, 1) \rightarrow P 3: r(x, 0) \\ & \rightarrow P 3: r(x, 1) \leftarrow P \&: r(x, Z)\end{aligned}$

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

Cloud Computing

- Processes perform local operations
- Operations propagated asynchronously

TSO - Total Store Order

- Widely used:
- Used by Sun SPARCv9
- Formalization of Intel $\mathbf{x 8 6}$
- Memory access optimization:
- Write operations are slow
- Introduce store buffers

TSO - Total Store Order

- Widely used:
- Used by Sun SPARCv9
- Formalization of Intel $\mathbf{x 8 6}$
- Memory access optimization:
- Write operations are slow
- Introduce store buffers

TSO - Classical Semantics

P1: write: $\mathbf{x}=1$
P1: write: $\mathbf{x}=$ Z
Pl: read: $\mathrm{x}=\boldsymbol{2}$
Pl: read: $\mathbf{y}=0$

TSO-Classical Semantics

$$
\begin{aligned}
& \text { P1: write: } x=1 \\
& \text { P1: write: } x=2 \\
& \text { P1: read: } x=2 \\
& \text { P1: read: } y=0
\end{aligned}
$$

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathbf{x = 2}$
P1: read: $\mathrm{x}=$ む
Pl: read: $\mathrm{y}=0$

TSO-Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $x=$ Z
P1: read: $\mathrm{x}=$ む
Pl: read: $y=0$

TSO-Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $x=$ Z
Pl: read: $\mathrm{x}=$ む
Pl: read: $\mathrm{y}=0$

TSO-Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathrm{x}=$ =
Pl: read: $\mathrm{x}=$ ん
P1: read: $\mathbf{y}=0$

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathbf{x = 2}$
P1: read: $x=2$
P1: read: $\mathrm{y}=0$

TSO-Classical Semantics

P1: write: $\mathbf{x}=1$
P1: write: $\mathrm{x}=$ =
Pl: read: $\mathrm{x}=$ む
Pl: read: $\mathbf{y}=0$

TSO-Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathrm{x}=$ =
Pl: read: $\mathrm{x}=$ む
P1: read: $y=0$

TSO-Classical Semantics

P1: write: $\mathbf{x}=1$
P1: write: $\mathrm{x}=$ =
Pl: read: $\mathrm{x}=$ む
Pl: read: $\mathbf{y}=0$

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathbf{x}=$ Z
Pl: read: $\mathrm{x}=$ む
P1: read: $\mathbf{y}=0$

TSO-Classical Semantics

P1: write: $\mathbf{x}=1$
P1: write: $x=$ Z
Pl: read: $\mathrm{x}=$ む
Pl: read: $\mathbf{y}=0$

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathbf{x}=$ Z
Pl: read: $\mathrm{x}=$ む
P1: read: $\mathbf{y}=0$

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathbf{x}=$ Z
P1: read: $\mathrm{x}=$ む
Pl: read: $\mathbf{y}=0$

- write to buffer
- read from buffer
- read from memory
- update memory

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $x=$ Z
Pl: read: $\mathrm{x}=$ む
Pl: read: $\mathbf{y}=0$
write to buffer

- read from buffer
- read from memory update memory

TSO - Classical Semantics

P1: write: $\mathrm{x}=1$
P1: write: $\mathrm{x}=\boldsymbol{2}$
P1: read: $\mathrm{x}=2$
P1: read: $\mathbf{y}=0$
write to buffer

- read from buffer

TSO

- Extra behaviors
- Potentially bad behaviors

Dekker Protocol

Sequential Consistency = Interleaving

Dekker Protocol

Dekker Protocol

tso

Dekker Protocol

tso

Dekker Protocol

tso

Dekker Protocol

Dekker Protocol

ISO

Dekker Protocol

ISO

Dekker Protocol

Dekker Protocol

> P1
write: $\mathrm{x}=1$
read: $\mathrm{y}=0$
critical section

TSO

Dekker Protocol

tso

Dekker Protocol

$$
\text { P1 Initially: } \mathrm{x}=\mathrm{y}=\mathbf{0} \text { P2 }
$$

write: $\mathrm{x}=1$
write: $\mathrm{y}=1$
read: $\mathbf{y}=0$
critical section

tso

Dekker Protocol

$$
\text { P1 Initially: } \mathrm{x}=\mathrm{y}=\mathbf{0} \text { P2 }
$$

write: $\mathbf{x}=1$
write: $\mathrm{y}=1$
read: $\mathrm{y}=0$
critical section
read: $\mathrm{x}=0$
critical section

Dekker Protocol

$$
\text { P1 Initially: } \mathrm{x}=\mathrm{y}=\mathbf{0} \text { PZ }
$$

write: $\mathrm{x}=1 \quad$ write: $\mathrm{y}=1$
read: $\mathbf{y}=0 \quad$ read: $\mathrm{x}=0$
critical section
critical section

Dekker Protocol

$$
\text { P1 Initially: } x=y=0
$$

write: $\mathrm{x}=1 \quad$ write: $\mathrm{y}=1$
read: $y=0 \quad$ read: $x=0$
critical section
critical setion

Dekker Protocol

Dekker Protocol

$$
\begin{aligned}
& \text { P1 } \\
& \text { write: } \mathrm{x}=1 \\
& \text { read: } \mathrm{y}=0 \\
& \text { critical section }
\end{aligned}
$$

$$
\text { Initially: } x=y=0
$$

Dekker Protocol

$$
\text { P1 Initially: } \mathrm{x}=\mathrm{y}=\mathbf{0} \text { PZ }
$$

write: $\mathbf{x}=1$
write: $\mathrm{y}=1$
read: $\mathbf{y}=0 \quad$ read: $\mathbf{x}=0$
critical section critical section

Dekker Protocol

$$
\text { P1 Initially: } \mathrm{x}=\mathrm{y}=\mathbf{0} \text { PZ }
$$

write: $\mathbf{x}=1$
read: $\mathbf{y}=0$
critical section
\triangleright

TSO

tso

TSO

Weakly Consistent Systems

```
-Microprocessors:
    - TSO, POWER, ARM, ...
- Weak Cache Protocols:
    - TSO-CC, Racer, SISD, ...
- Programming Languages:
    - C11, Java, ...
- Distributed Data Stores:
    - Amazon, Facebook, Google, ...
```

+ Ffficiency
- Non-intuitive behaviours

Weakly Consistent Systems

- Microprocessors:
- TSO, POWER, ARM, ...
- Weak Cache Protocols:
- TSO-CC, Racer, SISD, ...
- Programming Languages:
- C11, Java, ...
- Distributed Data Stores:
+ Efficiency
- Non-intuitive behaviours
- Semantics
- Gorrectness analysis: simualtion, testing, verification, synthesis
- Methods and tools: decidability, complexity, algorithms
- Specifications

Weakly Consistent Systems

- Micronrocessors:
- TSO, POWER, ARIV, ...
- Wieak Cache Protocols:
- TSO-CC, Racer, SISD, ...
- Programming Languages:
- C11, Java, ...
- Distributed Data Stores:
+ Efficiency
- Non-intuitive behaviours
- Semantics
- Gorrectness analysis: simualtion, testing, verification, synthesis
- Methods and tools: decidability, complexity, algorithms
- Specifications

Verification under TSO is Difficult

while (1)

 write: $x=1$

Verification under TSO is Difficult

```
while (1)
    write: x=1
P0: write: x = 1
PO: write: x=1
    \bullet\bullet\bullet
PO: write: x = 1
```


Verification under TSO is Difficult

```
while (1)
    write: x=1
PO: write: x = 1
PO: write: x=1
PO: write: x = 1
```


Verification under TSO is Difficult

```
while (1)
    write: x=1
P0: write: x = 1
PO: write: x=1
PO: write: x=1
```


Verification under TSO is Difficult

while (1)
write: $x=1$
P0: write: $\mathrm{x}=1$
PO: write: $x=1$
PO: write: $\mathrm{x}=1$

Verification under TSO is Difficult

```
while (1)
    write: x=1
PO: write: x = 1
PO: write: x=1
PO: write: x = 1
    \bullet\bullet
```

 \(\xrightarrow{20} \rightarrow x=1 \rightarrow \begin{aligned} & x=1 \\ & y=1\end{aligned} \rightarrow \begin{aligned} & x=0 \\ & y=0\end{aligned}\)

Verification under TSO is Difficult

while (1)

 write: $\mathrm{x}=1$PO: write: $\mathrm{x}=1$
PO: write: $\mathrm{x}=1$

P0: write: $\mathrm{x}=1$

- • •

Verification under TSO is Difficult

while (1)

 write: $\mathrm{x}=1$PO: write: $x=1$
PO: write: $\mathrm{x}=1$

PO: write: $\mathrm{x}=1$

- • •

Dual TSO

- store buffer load buffer
- write immediately updates memory
- buffers contain expected reads
- messages: self, other

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathbf{x = 1}$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $x=1$
P1: read: $\mathbf{x = 1}$
Pl: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
Pl: read: $\mathrm{x}=1$
Pl: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
P1: read: $\mathbf{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
P1: read: $\mathbf{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
Pl: read: $\mathrm{x}=1$
Pl: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
Pl: read: $\mathrm{x}=1$
Pl: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $x=1$
P1: read: $\mathbf{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
Pl: read: $\mathrm{x}=1$
Pl: read: $\mathbf{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
PI $\leftarrow x=1$, self
$y=0$,other
$x=1$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathbf{x = 1}$
P1: read: $\mathrm{y}=0$

Dual TSO

Pl: write: $\mathrm{x}=1$
Pl: read: $\mathrm{x}=1$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathbf{x = 1}$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
P1: read: $\mathrm{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
Pl: read: $\mathbf{y}=0$

- write + self-propagation
- propagate from memory
- read own-writes
- read oldest write
- remove oldest write

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $\mathrm{x}=1$
P1: read: $\mathbf{y}=0$

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $x=1$
P1: read: $\mathbf{y}=0$

- write + self-propagation
- propagate from memory
- read own-writes
- read oldest write

TSO \equiv Dual-TSO

Dual TSO

P1: write: $\mathrm{x}=1$
P1: read: $x=1$
P1: read: $\mathbf{y}=0$

- write + self-propagation
- propagate from memory
- read own-writes
- read oldest write
remove oldest write

Classical

TSO

P1: w(x,2)

Classical
TSO

P1: w (x, Z)

Classical
TSO

P1: w $(x, Z) \rightarrow P 1: r(y, 0)$

Classical
TSO

$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$: $w(y, 1)$
Classical
TSO

P1: w(x,2) $\rightarrow P 1: r(y, 0) \rightarrow P 2: w(y, 1)$
Classical
TSO

P1: $w(x, 8) \rightarrow P 1: r(y, 0) \rightarrow P \&: w(y, 1) \rightarrow$ PR: $w(x, 1)$
Classical
TSO

P1: $w(x, 8) \rightarrow P 1: r(y, 0) \rightarrow P \&: w(y, 1) \rightarrow$ PR: $w(x, 1)$
Classical
TSO

$P 1: w(x, 2) \rightarrow P 1: x(y, 0) \rightarrow P 2: w(y, 1) \rightarrow P 2: w(x, 1)$
Classical
TSO

$P 1: w(x, 2) \rightarrow P 1: x(y, 0) \rightarrow P 2: w(y, 1) \rightarrow P 2: w(x, 1)$
Classical
TSO

$P 1: w(x, 2) \rightarrow P 1: x(y, 0) \rightarrow P 2: w(y, 1) \rightarrow P 2: w(x, 1)$
Classical
TSO

$P 1: w(x, \gtrless) \rightarrow P 1: x(y, 0) \rightarrow P \&: w(y, 1) \rightarrow P \&: w(x, 1)$
Classical
TSO

P1: $w(x, 8) \rightarrow P 1: r(y, 0) \rightarrow P \&: w(y, 1) \rightarrow P \&: w(x, 1) \rightarrow P R: r(x, \&)$
Classical
TSO

$P 1: w(x, 8) \rightarrow P 1: r(y, 0) \rightarrow P \&: w(y, 1) \rightarrow P R: w(x, 1) \rightarrow P \&: r(x, \mathcal{B})$

Classical

Dual TSO
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$: $r(x, 2)$

Classical
TSO

Dual TSO
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$: $r(x, Z)$

Classical
TSO

Dual TSO
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$: $r(x, Z)$

Classical
TSO

Dual TSO

PA: w ($\mathrm{y}, 1$)

P1: $w(x, \mathbb{Z}) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PA: w ($\mathrm{y}, 1$)

P1: $w(x, \mathbb{Z}) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

P\&: w $(\mathrm{y}, 1)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$: $r(x, R)$
Classical
TSO

Dual TSO

PA: w ($\mathrm{y}, 1$)

P1: $w(x, \mathbb{Z}) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

P\&: w $(y, 1) \rightarrow$ PA: w $(x, 1)$

P1: $w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P R: w(y, 1) \rightarrow P R: w(x, 1) \rightarrow P R: r(x, \&)$

Classical
TSO

Dual TSO

P\&: $w(y, 1) \rightarrow$ PR: w $(x, 1)$

P1: $w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P R: w(y, 1) \rightarrow P R: w(x, 1) \rightarrow P R: r(x, \&)$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow$ P2: $w(x, 1)$

P1: $w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PA: w $(y, 1) \rightarrow$ PR: w $(x, 1)$

P1: $w(x, R) \rightarrow P 1: r(y, 0) \rightarrow$ PR: $w(y, 1) \rightarrow$ PR: $w(x, 1) \rightarrow P \&: r(x, R)$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow P$ R: $w(x, 1) \rightarrow P 1: w(x, Z)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow P$ R: $w(x, 1) \rightarrow P 1: w(x, Z)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow P$ A: $w(x, 1) \rightarrow P 1: w(x, Z)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

P\&: $w(y, 1) \rightarrow P$ A: $w(x, 1) \rightarrow P 1: w(x, 2)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$ P: $r(x, Z)$

Classical
TSO

Dual TSO

PA: $w(y, 1) \rightarrow P$ A: $w(x, 1) \rightarrow P 1: w(x$, z)
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PA: $w(y, 1) \rightarrow$ PA: $w(x, 1) \rightarrow P$ 1: w $(x, \not \subset)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

PR: $w(y, 1) \rightarrow P$ R: $w(x, 1) \rightarrow P 1: w(x, Z)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

Dual TSO

PR: w $(y, 1) \rightarrow$ PA: $w(x, 1) \rightarrow P 1: w(x, Z)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P 1: w(x, R) \rightarrow P$: $r(x, Z)$

P1: $w(x, \&) \rightarrow P 1: r(y, 0) \rightarrow P R: w(y, 1) \rightarrow P R: w(x, 1) \rightarrow P R: r(x, \mathcal{B})$

Classical
TSO

Dual TSO

PR: $w(y, 1) \rightarrow P$ R: $w(x, 1) \rightarrow P 1: w(x, \mathbb{Z}) \rightarrow P$: $r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$ R: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

P P: $w(y, 1) \rightarrow P$ A: $w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P \&: r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

P P: $w(y, 1) \rightarrow P$ A: $w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P \&: r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

P P: $w(y, 1) \rightarrow P$ \&: $w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P$: $r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

P P: $w(y, 1) \rightarrow P$ \&: $w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P$: $r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

Dual TSO

$P 2: w(y, 1) \rightarrow P 8: w(x, 1) \rightarrow \mathbf{P} \mathbf{1}: w(x, 2) \rightarrow P 8: x(x, 2) \rightarrow \mathbf{P} \mathbf{1 : ~} \mathbf{r}(\mathbf{y}, \mathbf{0})$

Classical
TSO

P P: $w(y, 1) \rightarrow P$ \&: $w(x, 1) \rightarrow P 1: w(x, Z) \rightarrow P$: $r(x, Z) \rightarrow P 1: r(y, 0)$
$P 1: w(x, Z) \rightarrow P 1: r(y, 0) \rightarrow P$ P: $w(y, 1) \rightarrow P$ P: $w(x, 1) \rightarrow P$ P: (x, R)

Classical
TSO

Dual TSO

P1: $w(x, 2) \rightarrow P 1: r(y, 0) \rightarrow P$: $w(y, 1) \rightarrow P$: $w(x, 1) \rightarrow P$ P: $r(x, 2)$

Classical
TSO

Dual TSO - IMonotonicity

partition of load buffer

$$
x=2, \text { self } \quad y=1 \text {,self } \quad x=1 \text {,other } \quad y=0 \text {,self } \quad x=0, \text { other }
$$

Old
New

Dual TSO-Monotonicity

partition of load buffer

$$
x=2, \text { self } \mid \quad y=1, \text { self }
$$

Old

newest self message on y

New

Dual TSO - Monotonicity

partition of load buffer

Dual TSO - Monotonicity

partition of load buffer

Dual TSO - MMonotonicity

Ordering on Buffers

Dual TSO - IMonotonicity

Ordering on Buffers

Dual TSO - MMonotonicity

Ordering on Buffers

Dual TSO - IMonotonicity

Ordering on Buffers

Dual TSO - IMonotonicity

$a b \sqsubseteq x a y b z$

Ordering on Buffers

Dual TSO - MMonotonicity

$a b \sqsubseteq 2 a y b z$

Ordering on Buffers

Dual TSO - MMonotonicity

Ordering on Configurations

- identical process states
- identical memory state
- sub-word relation on buffers

Dual TSO - MMonotonicity

Ordering on Configurations

- identical process states
- identical memory state
- sub-word relation on buffers

Dual TSO - IMonotonicity

Ordering on Configurations

- identical process states
- identical memory state
- sub-word relation on buffers

Dual TSO - MMonotonicity

Ordering on Configurations

- identical process states
- identical memory state
- sub-word relation on buffers

Dual TSO - IMonotonicity

Ordering on Configurations

C1
\sqcap

C3

C2

Monotonicity

Dual TSO - IMonotonicity

Ordering on Configurations

Dual TSO - IMonotonicity

- finite-state programs running on TSO:
- reachability analysis terminates
- reachability decidable

Experimental Results

https://github.com/memorax/memorax

Experimental Results

Experimental Results

time (secs)
\# generated configurations

		COnfigur	
Program	$\# T$		
		$\# C$	
SB	0.0	147	
LB	0.6	1028	
MP	0.0	149	
WRC	0.8	618	
ISA2	4.3	1539	
RWC	0.2	293	
W+RWC	1.5	828	
IRIW	4.6	648	

Cache
 Coherence Protocol

 $\equiv \mathbf{S C}$

Cache
 Coherence Protocol

TSO-CC: Consistency directed cache coherence for TSO
Marco Elver
University of Edinburgh marco.elver@ed.ac.uk

Vijay Nagarajan University of Edinburgh vijay.nagarajan@ed.ac.uk

Racer: TSO Consistency via Race Detection

Alberto Ros
Department of Computer Engineering Universidad de Murcia, Spain aros@ditec.um.es

Stefanos Kaxiras
Department of Information Technology Uppsala Universitet, Sweden stefanos.kaxiras@it.uu.se
monitors Examples

TSO-Counter-

 ExamplesP1: w $(x, 1)$

P1: $w(x, 1) \rightarrow$ PR: $x(x, 1)$

P1: $w(x, 1) \rightarrow$ PR: $r(x, 1) \rightarrow$ P3: $w(x, 8)$

P1: w $(x, 1) \rightarrow P R: x(x, 1) \rightarrow$ P3: w $(x, 2) \rightarrow P 4: x(x, 2)$
$P 1: w(x, 1) \rightarrow P R: r(x, 1) \rightarrow P 3: w(x, 2) \rightarrow P 4: r(x, 2) \rightarrow P 5: r(x, 1)$

P1: $w(x, 1) \rightarrow P$: $r(x, 1) \rightarrow P 3: w(x, 2) \rightarrow P 4: r(x, Z) \rightarrow P 5: r(x, 1)$
$P 1: w(x, 1) \rightarrow P 2: r(x, 1) \rightarrow P 3: w(x, 2) \rightarrow P 3: w(y, 1) \rightarrow P 4: r(y, 1)$

P5: $r(x, 1)$

$T S O \equiv 12$ counter-examples

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

Po	Pnitially: $\mathbf{x}=\mathbf{y}=\mathbf{0}$
write: $\mathbf{x}=1$	write: $\mathbf{y}=1$
mfence	mfence
read: $\mathbf{y}=0$	read: $\mathbf{x}=0$
critical section	critical section

Potential Bad Behaviour Dekker

Initially: $\mathbf{x}=\mathbf{y}=0$	
P0	P1
write: $\mathrm{x}=1$	write: $\mathrm{y}=1$
mfence	mfence
read: $\mathbf{y}=0$	read: $\mathrm{x}=0$
critical section	critical section

Potential Bad Behaviour Dekker

PO	Initially: $\mathbf{x = y = 0}$
P1	
write: $x=1$	write: $y=1$
mfence	mfence
read: $y=0$ read: $x=0$ critical section critical section	

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

PO Initial	$k=y=0$
write: $\mathrm{x}=1$	write: $\mathrm{y}=1$
mfence	mfence
read: $\mathbf{y}=0$ critical section	read: $\mathrm{x}=0$ critical section

TSO

Potential Bad Behaviour Dekker

TSO

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

P0	Initially: $\mathrm{x}=\mathbf{y = 0}$
P1	
write: $\mathrm{x}=1$	write: $\mathrm{y}=1$
mfence	mfence
read: $\mathrm{y}=0$ critical section	read: $\mathrm{x}=0$ critical section

TSO

Potential Bad Behaviour Dekker

P0	Initially: $\mathrm{x}=\mathbf{y = 0}$
P1	
write: $\mathrm{x}=1$	write: $\mathrm{y}=1$
mfence	mfence
read: $\mathrm{y}=0$ critical section	read: $\mathrm{x}=0$ critical section

TSO

Potential Bad Behaviour Dekker

Potential Bad Behaviour Dekker

Verification and Correction

specification

Verification and Correction

specification

insert fences

Verification and Correction

specification

Verification and Correction

insert fences

Verification and Correction

specification
insert fences

optimality = smallest set of fences needed for correctness

Conclusion

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO

Current Work

- Weak Cache Verification
- Other memory models, e.g., POWFR, ARIN, C11
- Stateless Model Checking
- Monitor Design

Experimental Results

Dual-ISO vs Memorax:

- Running time
- Memory consumption

Program	\#P	Dual-TSO		Memorax	
		\#T	\#C	\#T	\#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	TO	\bullet
Ticket_spin_lock	3	0.9	18963	TO	\bullet
Bakery	2	2.6	82050	TO	\bullet
Dijkstra	2	0.2	8324	TO	\bullet
Lamport_fast	3	17.7	292543	TO	\bullet
Burns	4	124.3	2762578	TO	\bullet

Experimental Results

Single buffer approach (exact method [TACAS12+13])

Dual-ISO vs Memorax

- Running time
- Miemory consumption

Program	\#P	Dual-TSO		Memorax	
		\#T	\#C	\#T	\#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	TO	\bullet
Ticket_spin_lock	3	0.9	18963	TO	\bullet
Bakery	2	2.6	82050	TO	\bullet
Dijkstra	2	0.2	8324	TO	\bullet
Lamport_fast	3	17.7	292543	TO	\bullet
Burns	4	124.3	2762578	TO	\bullet

Experimental Results

Dual-ISO vs Miemorax

- Running time
- Memory consumption
standard benchmarks:
litmus tests and mutual exclusion algorithms

Program	\#P	Dual-TSO		Memorax	
		\#T	\#C	\#T	\#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	TO	\bullet
Ticket_spin_lock	3	0.9	18963	TO	\bullet
Bakery	2	2.6	82050	TO	\bullet
Dijkstra	2	0.2	8324	TO	\bullet
Lamport_fast	3	17.7	292543	TO	\bullet
Burns	4	124.3	2762578	TO	\bullet

Truenimental running bine Experimental F in ssoonds

Dual-HSO vs Memorax

- Running time
- Memory consumption

Program	\#P	Dual-TS		Memorax	
		\#T	\#C	\#T	\#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	TO	-
Ticket_spin_lock	3	0.9	18963	TO	-
Bakery	2	2.6	82050	TO	-
Dijkstra	2	0.2	8324	TO	-
Lamport_fast	3	17.7	292543	TO	\bullet
Burns	4	124.3	2762578	TO	-

\square genemated Hix concturn configuretions

Dual-ISO vs Memorax

- Running time
- Memory consumption

| Program | \#P | Dual-TSO | | Memorax | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | \#T | \#C | \#T | \#C |
| SB | 5 | 0.3 | 10641 | 559.7 | 10515914 |
| LB | 3 | 0.0 | 2048 | 71.4 | 1499475 |
| WRC | 4 | 0.0 | 1507 | 63.3 | 1398393 |
| ISA2 | 3 | 0.0 | 509 | 21.1 | 226519 |
| RWC | 5 | 0.1 | 4277 | 61.5 | 1196988 |
| W+RWC | 4 | 0.0 | 1713 | 83.6 | 1389009 |
| IRIW | 4 | 0.0 | 520 | 34.4 | 358057 |
| Nbw_w_wr | 2 | 0.0 | 222 | 10.7 | 200844 |
| Sense_rev_bar | 2 | 0.1 | 1704 | 0.8 | 20577 |
| Dekker | 2 | 0.1 | 5053 | 1.1 | 19788 |
| Dekker_simple | 2 | 0.0 | 98 | 0.0 | 595 |
| Peterson | 2 | 0.1 | 5442 | 5.2 | 90301 |
| Peterson_loop | 2 | 0.2 | 7632 | 5.6 | 100082 |
| Szymanski | 2 | 0.6 | 29018 | 1.0 | 26003 |
| MP | 4 | 0.0 | 883 | TO | \bullet |
| Ticket_spin_lock | 3 | 0.9 | 18963 | TO | \bullet |
| Bakery | 2 | 2.6 | 82050 | TO | \bullet |
| Dijkstra | 2 | 0.2 | 8324 | TO | \bullet |
| Lamport_fast | 3 | 17.7 | 292543 | TO | \bullet |
| Burns | 4 | 124.3 | 2762578 | TO | \bullet |

Experimental Res $\begin{gathered}\text { generated } \\ \text { conngurations }\end{gathered}$

Dual-TSO vs Memoraw:

- Running time
- Memory consumption

Dual-TSO is faster and uses less memory in most of examples

Program	\#P	Dual-TSO		Memorax	
		\#T	\#C	\# T	\#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	TO	-
Ticket_spin_lock	3	0.9	18963	TO	\bullet
Bakery	2	2.6	82050	TO	-
Dijkstra	2	0.2	8324	TO	\bullet
Lamport_fast	3	17.7	292543	TO	\bullet
Burns	4	124.3	2762578	TO	\bullet

Experimental Results Parameterised Cases

Program	Dual-TSO	
	\#T	\#C
SB	0.0	147
LB	0.6	1028
MP	0.0	149
WRC	0.8	618
ISA2	4.3	1539
RWC	0.2	293
W+RWC	1.5	828
IRIW	4.6	648

Experimental Results Parameterised Cases

Đxperimental Results Parameterised Cases

increasing the number of processes

Program	Dual-TSO	
	\#T	\#C
SB	0.0	147
LB	0.6	1028
MP	0.0	149
WRC	0.8	618
ISA2	4.3	1539
RWC	0.2	293
W+RWC	1.5	828
IRIW	4.6	648

Đxperimental Results Parameterised Cases

Đxperimental Results Parameterised Cases

