Weak Consistency (TSO as an Example)

Parosh Aziz Abdulla¹

Mohamed Faouzi Atig¹

Ahmed Bouajjani²

Tuan Phong Ngo¹

¹Uppsala University ²IRIF, Université Paris Diderot & IUF

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

Outline

• Weak Consistency

- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations
- + Simple and intuitive

- Shared memory
- Processes: atomic read/write
- Interleaving of the operations
- + Simple and intuitive
- Too strong

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

- Processes perform local operations
- Operations propagated asynchronously

TSO - Total Store Order

- Widely used:
 - Used by Sun SPARCv9
 - Formalization of Intel x86
- Memory access optimization:
 - Write operations are slow
 - Introduce store buffers

TSO - Total Store Order

- Widely used:
 - Used by Sun SPARCv9
 - Formalization of Intel x86
- Memory access optimization:
 - Write operations are slow
 - Introduce store buffers

- **P1: write:** x = 1
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

P1: write: x = 1
P1: write: x = 2
P1: read: x = 2
P1: read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1:** read: y = 0

 $\begin{array}{c} p_1 \\ \hline \\ p_2 \\ \hline \\ \end{array} \end{array}$

- write to buffer
- read from buffer
- read from memory
- update memory

TSO - Classical Semantics

- **P1: write: x = 1**
- **P1: write: x = 2**
- **P1:** read: x = 2
- **P1: read: y = 0**

write to buffer

- read from buffer
- read from memory
- update memory

TSO - Classical Semantics

- **P1: write: x = 1**
- **P1:** write: x = 2
- **P1:** read: x = 2
- **P1:** read: y = 0

write to buffer

- read from buffer
- read from memory
- update memory

TSO

- Extra behaviors
- Potentially bad behaviors

Sequential Consistency = Interleaving

Weakly Consistent Systems

- Microprocessors:
 - TSO, POWER, ARM, ...
- Weak Cache Protocols:
 - TSO-CC, Racer, SISD, ...
- Programming Languages:
 - C11, Java, ...
- Distributed Data Stores:
 - Amazon, Facebook, Google, ...

- + Efficiency
- Non-intuitive behaviours

Weakly Consistent Systems

- Microprocessors:
 - TSO, POWER, ARM, ...
- Weak Cache Protocols:
 - TSO-CC, Racer, SISD, ...
- Programming Languages:
 - C11, Java, ...
- Distributed Data Stores:
 - Amazon, Facebook, Google, ...

+ Efficiency

- Non-intuitive behaviours

• Semantics

- Correctness analysis: simualtion, testing, verification, synthesis
- Methods and tools: decidability, complexity, algorithms
- Specifications

Weakly Consistent Systems

- Microprocessors:
 - TSO, POWER, ARM, ...
- Weak Gache Protocols:
 - TSO-CC, Racer, SISD, ...
- Programming Languages:
 - C11, Java, ...
- Distributed Data Stores:
 - Amazon, Facebook, Google, ...

- + Efficiency
- Non-intuitive behaviours

• Semantics

- Correctness analysis: simualtion, testing, verification, synthesis
- Methods and tools: decidability, complexity, algorithms
- Specifications

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

I	Dual TSO
P1:	write: x = 1
P1:	read: x = 1
P1:	read: y = 0

Dual TSO	
P1:	write: x = 1
P1:	read: x = 1
P1:	read: y = 0

Dual TSO	
P1:	write: x = 1
P1:	read: x = 1
P1:	read: y = 0

	Dual TSO
P1:	write: x = 1
P1 :	read: x = 1
P1 :	read: y = 0

Dual TSO	
P1:	write: x = 1
P1:	read: x = 1
P1:	read: y = 0

	Dual TSO
P	1: write: x = 1
P	1: read: x = 1
P	1: read: y = 0

	Ι	Jual TSO
P	1:	write: x = 1
P	1:	read: x = 1
P	P1:	read: y = 0

Dual TSO	
P1:	write: x = 1
P1:	read: x = 1
P1:	read: y = 0

Dual TSO P1: write: x = 1 P1: read: x = 1 P1: read: y = 0

P1: write: x = 1
P1: read: x = 1
P1: read: y = 0

P1: write: x = 1
P1: read: x = 1
P1: read: y = 0

- write + self-propagation
- propagate from memory
- read own-writes
- read oldest write
- remove oldest write

P1: write: x = 1
P1: read: x = 1
P1: read: y = 0

- write + self-propagation
 propagate from memory
 read own-writes
- read oldest write
- remove oldest write

P1: write: x = 1
P1: read: x = 1
P1: read: y = 0

write + self-propagation
propagate from memory
read own-writes
read oldest write
remove oldest write

$\mathbf{TSO} \equiv \mathbf{Dual} \cdot \mathbf{TSO}$

P1: write: x = 1
P1: read: x = 1
P1: read: y = 0

write + self-propagation
propagate from memory
read own-writes
read oldest write
remove oldest write

TSO

TSO

TSO

Classical TSO

Classical TSO

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

New

Dual TSO - Monotonicity

Dual TSO - Monotonicity

Ordering on Buffers

Ordering on Buffers

- identical process states
- identical memory state
- sub-word relation on buffers

P1

P1

P2

x=1,self

x,1,other

P2

. . .

 $\mathbf{x} = \mathbf{1}$

y = 0

- identical process states
- identical memory state
- sub-word relation on buffers

- identical process states
- identical memory state-
- sub-word relation on buffers

- identical process states
- identical memory state
- sub-word relation on buffers

• finite-state programs running on TSO:

- reachability analysis terminates
- reachability decidable

Experimental Results

https://github.com/memorax/memorax

Experimental Results

Tool: Memorax

standard benchmarks: litmus tests and mutual exclusion

Program	#P	Safe	under			
Program		\mathbf{SC}	TSO	= #T	#C	
SB	5	yes	no	0.3	10641	
LB	3	yes	yes	0.0	2048	
WRC	4	yes	yes	0.0	1507	
ISA2	3	yes	yes	0.0	509	
RWC	5	yes	no	0.1	4277	
W+RWC	4	yes	no	0.0	1713	
IRIW	4	yes	yes	0.0	520	
MP	4	yes	yes	0.0	883	
Simple Dekker	2	yes	no	0.0	98	
Dekker	2	yes	no	0.1	5053	
Peterson	2	yes	no	0.1	5442	
Repeated Peterson	2	yes	no	0.2	7632	
Bakery	2	yes	no	2.6	82050	
Dijkstra	2	yes	no	0.2	8324	
Szymanski	2	yes	no	0.6	29018	
Ticket Spin Lock	3	yes	yes	0.9	18963	
Lamport's Fast Mutex	3	yes	no	17.7	292543	
Burns	4	yes	no	124.3	2762578	
NBW-W-WR	2	yes	yes	0.0	222	
Sense Reversing Barrier	2	yes	yes	0.1	1704	

time (secs)

generated

configurations

Experimental Results

	time (secs)			<pre># generated configurations</pre>			
Tool: Memorax			Program	#T	#C		
	parameterize verification	đ	SB LB MP	$ \begin{array}{c c} 0.0 \\ 0.6 \\ 0.0 \end{array} $	$ 147 \\ 1028 \\ 149 $		
			WRC ISA2 RWC W+RWC	$ \begin{array}{c c} 0.8 \\ 4.3 \\ 0.2 \\ 1.5 \end{array} $	618 1539 293 828		

IRIW

4.6

648

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

Cache Coherence Protocol

TSO-Counter-Examples

TSO-Counter-

TSO-Counter-

TSO \equiv 12 counter-examples

Outline

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO
- Verification
- Specification
- Synthesis

98

Conclusion

- Weak Consistency
- Total Store Order (TSO)
- Dual TSO

Current Work

- Weak Cache Verification
- Other memory models, e.g., POWER, ARM, C11
- Stateless Model Checking
- Monitor Design

Experimental Results

Dual-TSO vs Memorax

- Running time
- Memory consumption

Drograma	-#D	Dual-TSO		Memorax	
Program	#P	#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	5 20	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•
115					

https://www.it.uu.se/katalog/tuang296/dual-tso

Experimental Results

115

Single buffer approach (exact method [TACAS12+13])

Dual-TSO vs Memorax

- Running time
- Memory consumption

D	#P	Dual-TSO		Memorax	
Program		#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	5 09	21.1	226519
RWC	5	0.1	4277	61. <mark>5</mark>	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	5 20	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
Sense_rev_bar	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	5 95
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

https://www.it.uu.se/katalog/tuang296/dual-tso

Experimental Results

116

Dual-TSO vs Memorax

- Running time
- Memory consumption

standard benchmarks: litmus tests and mutual exclusion algorithms

Drogram	#P	Dual-TSO		Memorax	
Program		#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	5 09	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	5 20	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

Experimental K

running time in seconds

Dual-TSO vs Memorax

- Running time
- Memory consumption

D	// D	Dual-TS		Memorax	
Program	rogram #P		#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
$Ticket_spin_lock$	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

Experimental Res configurations

Dual-TSO vs Memorax

- Running time
- Memory consumption

5		Dual-TSO		Memorax	
Program	#P	#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
Ticket_spin_lock	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	

Experimental Res configurations

Dual-TSO vs Memorax

- Running time
- Memory consumption

Dual-TSO is faster and uses less memory in most of examples

				Memorax	
Program	#P	Dual-TSO		· · · · · · · · · · · · · · · · · · ·	
0		#T	#C	#T	#C
SB	5	0.3	10641	559.7	10515914
LB	3	0.0	2048	71.4	1499475
WRC	4	0.0	1507	63.3	1398393
ISA2	3	0.0	509	21.1	226519
RWC	5	0.1	4277	61.5	1196988
W+RWC	4	0.0	1713	83.6	1389009
IRIW	4	0.0	520	34.4	358057
Nbw_w_wr	2	0.0	222	10.7	200844
$Sense_rev_bar$	2	0.1	1704	0.8	20577
Dekker	2	0.1	5053	1.1	19788
Dekker_simple	2	0.0	98	0.0	595
Peterson	2	0.1	5442	5.2	90301
Peterson_loop	2	0.2	7632	5.6	100082
Szymanski	2	0.6	29018	1.0	26003
MP	4	0.0	883	ТО	•
${\rm Ticket_spin_lock}$	3	0.9	18963	ТО	•
Bakery	2	2.6	82050	ТО	•
Dijkstra	2	0.2	8324	ТО	•
Lamport_fast	3	17.7	292543	ТО	•
Burns	4	124.3	2762578	ТО	•

118

Program	Dual-TSO			
Togram	#T	#C		
SB	0.0	147		
LB	0.6	1028		
MP	0.0	149		
WRC	0.8	618		
ISA2	4.3	1539		
RWC	0.2	293		
W+RWC	1.5	828		
IRIW	4.6	648		

